Two Dimensional Rotation Group

Overview


For a real {% n \times n %} matrix {% R %}, {% R %} is defined to be a rotation matrix if
{% R^TR = 1 %}
and
{% det(R) = 1 %}

Rotation Matrix


A rotation in the plane through the angle {% \theta %} is given by the following.
{% R = \begin{bmatrix} cos \theta & -sin \theta \\ sin \theta & cos \theta \\ \end{bmatrix} %}


The plane rotation is a lie group of a single parameter, {% \theta %}. The derivative of the matrix with respect to {% \theta %} is
{% J = \begin{bmatrix} 0 & - 1 \\ 1 & 0 \\ \end{bmatrix} %}
This is the generator of the group. The two dimensional rotation can then be shown to be equivalent to the exponential of the generator. (see rotation exponential)

Topics


Contents