Two Dimensional Rotation Group
Overview
For a real {% n \times n %} matrix {% R %}, {% R %} is defined to be a rotation matrix if
{% R^T R = 1 %}
and
{% det(R) = 1 %}
For a given infinitesimal rotation angle {% \theta %}, the rotation matrix is close to the
identiy matrix. We can therefore write it as
{% R(\theta) \approx I + A %}
For this equation, we are following the
Taylor Series Expansion
keeping only terms that are first order in {% \theta %}.
{% R^T R \approx (I + A^T)(I+A) \approx (I + A^T + A) = I %}
which means that {% A^T = -A %}. There is only one matrix that satisifies this requirement
{% J = \begin{bmatrix}
0 & - 1 \\
1 & 0 \\
\end{bmatrix} %}
Finite Rotation
A finite rotation can then be computed to be the limit of a bunch of small rotations.
{% R(\theta) = lim_{n \to \infty} R(\frac{\theta}{n})^n = lim_{n \to \infty} (1 + \frac{\theta J}{n})^n = e^{\theta J} %}