Overview
The Kronecker product of two matrices written as
{% A \otimes B %}
is the concatenation of each element of {% A %} multiplied by the matrix {% B %}
as in the following.
{%
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33} \\
\end{bmatrix}
\begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}\\
b_{31} & b_{32} & b_{33} \\
\end{bmatrix}
=
\begin{bmatrix}
a_{11}B & a_{12}B & a_{13}B \\
a_{21}B & a_{22}B & a_{23}B\\
a_{31}B & a_{32}B & a_{33}B \\
\end{bmatrix}
%}