Kronecker Product

Overview


The Kronecker product of two matrices written as
{% A \otimes B %}
is the concatenation of each element of {% A %} multiplied by the matrix {% B %} as in the following.
{% \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \\ \end{bmatrix} = \begin{bmatrix} a_{11}B & a_{12}B & a_{13}B \\ a_{21}B & a_{22}B & a_{23}B\\ a_{31}B & a_{32}B & a_{33}B \\ \end{bmatrix} %}