Notions of Set Theory

Overview


Many of the common notions used in mathematics can be formulated within set theory.

Definitions


  • Subset - {% A \subset B %}
  • Complement - {% A^c = U / A %}
  • Ordered Pair - {% (x,y) = \{\{x\}, \{x,y\}\} %}
  • Cartesian Product - {% A \times B = \{(x,y)| x \in A \, and \, y \in B \} %}
  • Relation - {% R \subset A \times B %}
    • Equivalence Relation
  • Function - {% \forall x \in A, \exists ! y \; s.t. \, (x,y) \in R %}