Overview
An operator {% P %} over a vector space {% X %} is defined to be a projection operator if
{% P = P^2 %}
Theorems
- The range and the null space of a projection are disjoint linear subspaces of the vector space {% X %}
- Given two disjoint linear subspaces {% M %} and {% N %} of {% X %} such that {% M \cup N = X %}, there is a projection operator {% P %} such that {% M %} is the range of {% P %} and {% N %} is the null space of {% P %}.
- Given an orthonormal basis {% v_1,...,v_k %} of a subspace of the vector {% X %}
{% P \vec{x} = \sum_{i=1}^k \langle \vec{x}, \vec{v}_i \rangle \vec{v}_i %}is a projection operator into the subspace and {% (\vec{x} - P\vec{x}) \perp \vec{x} %}