Hahn Banach Theorem

Definition


Given a real vector space {% X %} and a subspace of {% X %}, {% U %}, and a linear map {% \phi(x) %} such that
{% \phi(x) \leq p(x) %}
for {% x %} in {% U %} and for a sublinear map {% p(x) %} , thre exists a linear map {% f: X \rightarrow \mathbb{R} %} such that
{% f(x) = \phi(x) %}
for {% x\in U %}, and
{% f(x) \leq p(x) %}
for {% x \in X %}.

If {% p %} is a seminorm, then
{% |f(x)| \leq p(x) %}
for {% x \in X %}.

Topics