Three Dimensional Rotation Group

Overview


For a real nxn matrix {% R %}, {% R %} is defined to be a rotation matrix if
{% RR^T = 1 %}
and
{% det(R) = 1 %}

Three Dimensional


The three dimensional rotation matrices are more complex, in particular because the rotation can occur around any of three axes. (the case of a transformation around an axis that is intermediate between the 3 axes can be achieved by composing these three rotations)
{% R_x \begin{bmatrix} 1 & 0 & 0 \\ 0 & sin \theta & -sin \theta \\ 0 & sin \theta & cos \theta \\ \end{bmatrix} %}
{% R_y \begin{bmatrix} cos \theta & 0 & sin \theta \\ 0 & 1 & 0 \\ -sin \theta & 0 & cos \theta \\ \end{bmatrix} %}
{% R_z \begin{bmatrix} cos \theta & -sin \theta & 0 \\ sin \theta & cos \theta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} %}
A general three dimensional rotation matrix can be constructed by mutiplying the 3 basis rotations.

Contents