Overview
Forecast Error Measures
- {% MAE %} - mean absolute error
{% \frac{1}{n} \sum_n |e_t| %}
-
{% MAPE %} - mean absolute percentage error
{% \frac{1}{n} \sum_n |e_t|/d_t %}
-
{% RMSE %} - root mean square error
{% \sqrt{ \frac{1}{n} \sum_n |e_t| } %}
-
{% RMSE %} - root mean square error as a percentage
{% \sqrt{ \frac{1}{n} \sum_n |e_t| } / (\frac{1}{n} \sum d_t) %}
Using Reduction to Implement Error Measures
Implementing the above error measures
var mae = function(data, value, forecast){
return data.reduce(function(total, current){
return total + Math.abs(value(current)-forecast(current))
}, 0);
}
let err = await import('/lib/statistics/error/v1.0.0/regression.js');
let test = err.mae(...);