IS - LM Model Example

Overview


IS-LM Components


Following the example given in Anthony
{% Y = C + I + G %}
Then consumption function is assumed to be a linear function of {% Y %}
{% C = C_0 + \beta_0 Y %}
Likewise, the investment function is a linear function of the interest rate {% r %}
{% I = I_0 - \alpha_0 r %}
{% (1 - \beta_0) Y + \alpha_0 r = C_0 + I_0 + G %}
Money Demand {% M_d %} (see LM function) is assumed to be a linear function of the income {% Y %} and the interest rate {% r %}
{% M_d = M_0 + \beta_1 Y - \alpha_2 r %}
{% \beta_1 Y - \alpha_1 r = M_s - M_0 %}
Stating these equations in matrix terms:
{% \begin{bmatrix} \beta_1 & - \alpha_1 \\ 1-\beta_0 & \alpha_0 \\ \end{bmatrix} \begin{bmatrix} Y \\ r \\ \end{bmatrix} = \begin{bmatrix} M_s - M_0 \\ C_0 + I_0 + G \\ \end{bmatrix} %}
{% \begin{bmatrix} Y \\ r \\ \end{bmatrix} = \begin{bmatrix} \beta_1 & - \alpha_1 \\ 1-\beta_0 & \alpha_0 \\ \end{bmatrix} ^ {-1} \begin{bmatrix} M_s - M_0 \\ C_0 + I_0 + G \\ \end{bmatrix} %}